
Hidden structure in protein energy landscapes

Dengming Ming,1,2 Marian Anghel,1 and Michael E. Wall1,3,*
1Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

2School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, People’s Republic of China
3Bioscience Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

�Received 26 June 2007; revised manuscript received 4 December 2007; published 4 February 2008�

Inherent structure theory is used to discover strong connections between simple characteristics of protein
structure and the energy landscape of a Gō model. The potential energies and vibrational free energies of
inherent structures are highly correlated, and both reflect simple measures of networks of native contacts.
These connections have important consequences for models of protein dynamics and thermodynamics.
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Protein activity is controlled by dynamical transitions
among conformational substates �1�; the transitions may be
understood in terms of motions on an energy landscape �2�.
Substates correspond to local minima in the energy land-
scape, and transitions correspond to the hurdling of barriers
between minima. Interestingly, the protein energy landscape
resembles that of glasses �3�.

Spin-glass models have yielded insight into properties of
protein energy landscapes �4,5� and the kinetics of protein
folding �6�. The main motivation for using spin-glass models
rather than structural-glass models is that spin-glass models
are more analytically tractable; however, it has long been
recognized that structural-glass models might be better-
suited to describe proteins �5�. Indeed, protein unfolding has
been characterized as a rigidity transformation that is similar
to those seen in network glasses �7�.

Structural-glass-forming liquids have been fruitfully char-
acterized using inherent structure �IS� theory �8,9�, which
treats the energy landscape as a set of discrete basins that are
separated by saddles. Each basin contains a local minimum,
called an inherent structure, which is analogous to a protein
conformational substate. The dynamics are then naturally de-
scribed as vibrations about local minima, punctuated by tran-
sitions between neighboring basins. A key assumption in IS
theory is that vibrations are similar about minima with the
same potential energy; however, importantly, IS theory al-
lows for diversity among vibrations that have different po-
tential energies.

Guo and Thirumalai �10� have used IS theory to analyze
fluctuations in the neighborhood of the native state of a
coarse-grained model of a designed four-helix bundle pro-
tein. Baumketner, Shea, and Hiwatari �11� have applied IS
theory to study the glass transition in a coarse-grained model
of a 16-residue polypeptide; by IS analysis of molecular dy-
namics trajectories, they demonstrated the ability to rigor-
ously calculate the glass transition temperature due to freez-
ing in the native-state basin. In a more recent study,
Nakagawa and Peyrard �12� used IS theory to analyze the
energy landscape of the B1 segment of the IgG binding do-
main of streptococcal protein G �GB1� using a coarse-
grained model, finding that the density of minima increases

exponentially with the energy. Importantly, their analysis re-
lied on an assumption that vibrations are the same about all
potential energy minima. However, because protein models
become less rigid as noncovalent bonds are broken �13�, vi-
brations are expected to be different for different minima,
especially for minima with different potential energies. Di-
versity in vibrations not only would change the density of
minima, but also would have important implications for the
kinetics of transitions among conformational substates �1�;
however, if vibrations are the same for different minima,
their role in determining the kinetics of transitions would be
trivial.

To characterize the diversity in vibrations among different
protein inherent structures, we used IS theory to analyze the
same protein fragment considered by Nakagawa and Peyrard
�12�, GB1 �Protein Data Bank �14� entry 2GB1 �15��. GB1
has 56 amino acids and consists of a four-stranded � sheet
packed against a single helix �Fig. 1�.

As in Ref. �12�, we use a coarse-grained Gō model of
GB1. Compared to all-atom models, the Gō model enabled
ample sampling for IS analysis and enabled us to compare
our results to those in Ref. �12�. Although trivial compared to
all-atom molecular mechanics models, Gō models neverthe-
less can capture notrivial aspects of protein folding and as-
sembly �see, e.g., Refs. �17–19��, emphasizing the important
role of topology in determining mechanisms of these pro-
cesses. In addition, we hoped that analysis of a Gō model
would provide clues about the energy landscape of more de-
tailed models.

In the GB1 model, a configuration x was represented by
the set of C� positions, and the potential energy U�x� for C�

configurations x of all proteins was similar to that used for
the GB1 studies in Refs. �20� and �12�:
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The first term in Eq. �1� is the contribution from neighboring
backbone C� bond distances ri, the second is from angles �i
between neighboring bonds, the third is from dihedral angles
�i, the fourth is from noncovalent interactions between atom
pairs �i , j� that form a native contact, and the fifth is from
noncovalent interactions between other pairs of atoms. The
crystal structure was used as the reference structure to deter-
mine ri,0, �i,0, and rij,0, with native contacts determined using
a cutoff distance of 5.5 Å. Other parameter values are
Kb=200�0 Å−2, K�=40�0 rad−2, K�=0.3�0, �=0.18�0, and
C=4 Å. The absolute energy unit �0=1.89 kcal mol−1 was
determined as in Ref. �20�, assuming a folding temperature
T=350 K. As in Ref. �12�, instead of being defined with
respect to the reference structure, the dihedral angle terms
were defined to yield energy minima at 45° and −135° �20�,
adding some frustration in the native state.

Langevin dynamics simulations were performed using a
time step 0.0007	 and a friction coefficient of 0.2 /	, where
	=1.47 ps �following Ref. �20��. The collapse temperature
T�, defined by the maximum of the specific heat Cv vs T
�12�, was located by performing multiple simulations at dif-
ferent temperatures to estimate Cv and locate the value of T
at which it is maximal �T� is not guaranteed to be the same as
the folding temperature as defined, e.g., using the maximum
of the fluctuations in the number of native contacts versus T
�21��. A trajectory at temperature T� with 3
108 time steps
was sampled every 104 steps to obtain an ensemble of
3
104 inherent structures for analysis. �Results were similar
for independent runs, indicating that this sampling scheme
was adequate.� Local minima e�, corresponding to inherent
structures �, were found using conjugate gradient minimiza-
tion terminated when a step resulted in an energy change less

than 10−12�0. The protein exhibited multiple transitions be-
tween extended and collapsed states during the course of the
simulation, and the inherent structure ensembles exhibited a
bimodal probability distribution PIS�e� ,T�� of collapsed and
extended inherent-structure potential energies e� �Fig. 2�,
similar to the distribution in Ref. �12�.

Like a previous application of IS theory to proteins by
Baumketner, Shea, and Hiwatari �11�, we replace the con-
figurational integral in the partition function for an isolated
protein with a sum over contributions from individual inher-
ent structures:
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which defines the vibrational free energy Fv�� ,T�. In Eq. �2�,
R��� is the basin surrounding inherent structure �, �i is the
thermal wavelength of atom i, and � is a factor to account
for symmetries.

Values of Fv�� ,T�, calculated as differences with respect
to the native structure �=0 �the same holds for values of e��,
were estimated at the collapse temperature T� using a har-
monic approximation,

Fv��,T� =
kBT

2 �
i=7
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i

���

i
�0� , �3�

where i
��� is the ith eigenvalue of the Hessian

hjk=�2U /�xj�xk calculated at the energy minimum corre-
sponding to inherent structure � and i

�0� is the same for the
ground-state inherent structure. The sum is over all modes
with nonzero frequency: we neglect a contribution due to
changes in the rotational entropy for different inherent struc-
tures. Values of Fv are similar for inherent structures with a
similar potential energy e� �Fig. 3�. The contribution to Fv
from the highest 1/3 of the eigenvalues does not change for

FIG. 1. Schematic illustration of GB1 created using RASMOL

�16�.

FIG. 2. Estimated probabilities of inherent structures with en-
ergy e� at the collapse temperature T�.
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different inherent structures. Interestingly, there is a gap in
the eigenvalue spectrum between the lowest 2/3 and the
highest 1/3 of the eigenvalues �Fig. 4�; in addition, only the
highest 1/3 of the eigenvalues change when the bond-
distance force constant Kb is increased by a factor of 10,
indicating that the corresponding modes describe the bond
vibrations. Therefore bond vibrations do not change signifi-
cantly among different inherent structures. However, the to-
tal Fv, which includes contributions from the lowest 2/3 of
the eigenvalues, changes significantly with e� �Fig. 3�. The
assumption of constant Fv by Nakagawa and Peyrard �12�
therefore is only valid for modes that involve bond vibra-
tions. This result is consistent with studies of the loss of
protein rigidity when local constraints are relaxed �13�—e.g.,
in protein unfolding �7�—and is also consistent with molecu-
lar dynamics studies suggesting that vibrations can be di-
verse for different protein conformational substates �22,23�.

As demonstrated by the fit in Fig. 3, Fv is well modeled
using the function

Fv�e�,T�� = k2e� + �k2 − k1�kBT� ln�e−ec/kBT� + e−e�/kBT�� .

�4�

Equation �4� is essentially a piecewise-linear function with
slope k1 for e��ec and slope k2 for e��ec. For GB1,
k1=−0.40, k2=−0.91, and ec=88.4kBT�.

Inherent structure theory �8,9� assumes that Fv�� ,T�
=Fv�e� ,T� �validated for the present application in Fig. 3�
and relates Fv�e� ,T� and PIS�e� ,T� to the density of states
�IS�e�� through

PIS�e�,T� =
1

Z
�IS�e��e−e�/kBTe−Fv�e�,T�/kBT. �5�

Given �IS�e0�=1, Fv�e0 ,T�=0, and e0=0, �IS�e�� is given
by

�IS�e�� = ee�/kBTeFv�e�,T�/kBT PIS�e�,T�
PIS�e0,T�

, �6�

which generalizes a similar equation in Nakagawa and Pey-
rard �12� to values of Fv�e� ,T� that vary with e�. Because Fv
in Eq. �3� is proportional to T, in a harmonic approximation
of Fv, temperature changes are guaranteed only to influence
PIS through the Boltzmann factor e−e�/kBT in Eq. �5�. This
behavior was observed in Ref. �12�; however, it was inter-
preted there as indicating that values of Fv are similar for
different inherent structures.

We used Eq. �6� along with the calculated PIS and Fv from
Eq. �4� to model the density of inherent structures �IS. At
energies below ec, �IS exhibits an exponential increase, but
with a slight increase in the exponent factor above an energy
er, giving rise to a knee in the plot of log �IS vs e� �Fig. 5�.
The knee is located at the minimum in PIS between the ex-
tended and collapsed states �Fig. 2� and is thus associated
with the transition state. Such a knee was also seen in a
previous model of �IS in which vibrations were assumed to
be identical for different inherent structures �12�. Above ec,
�IS plateaus and decreases at the highest energies, which is a

FIG. 3. �Color online� Vibrational free energies Fv of inherent
structures vs their potential energies e� �black points�. The depen-
dence is well modeled by Eq. �4� with ec=88.4kBT� �piecewise-
linear red line�. The contribution from the highest 1/3 of the eigen-
values is constant �green points following y=0�.

FIG. 4. Eigenvalue spectrum of an arbitrary inherent structure
before �open circles� and after �solid circles� increasing the bond-
distance spring constant Kb by a factor of 10. The low-frequency
spectra are indistinguishable.

FIG. 5. Density of inherent structures �IS�e��. The knee at
er=47.4kBT� is due to a change in stress, and the plateau beginning
at roughly ec=88.4kBT� is due to a change in rigidity; both are
understood in terms of the network of native contacts �Figs. 6 and
7�.
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consequence of the structure in both PIS and Fv. Rather than
being exponential in form �12�, from Eqs. �3�, �4�, and �6�,
�IS in this region has the form

�IS�e� � ec� = ee�/kBTek2e�/kBT�e�k1−k2�ec/kBT�
PIS�e�,T�
PIS�e0,T�

.

�7�

Because k2 is close to −1, the structure of �IS�e�� closely
resembles that of PIS�e� ,T�� above ec.

We found �Fig. 6� that e� is closely related to the number
of broken native contacts, n̄�, through the piecewise-linear
function

e� = h2n̄� + �h2 − h1�ln�e−n̄r + e−n̄�� . �8�

The slopes h1 and h2 correspond to the amount of energy
required to break a native contact below �h1� and above �h2�
a critical number of broken contacts, n̄r. Data for GB1 are
well modeled using h1=0.997, h2=0.622, and n̄r=60. Below
n̄r, breaking a native contact requires more potential energy
than above n̄r. Therefore, n̄r is associated with a change in
protein stress.

There are interesting connections between the structure of
�IS below ec �Fig. 5� and the dependence of e� on n̄� �Fig.
6�. The change in the slope of �IS at er is closely related to
the change in the slope of e��n̄�� at n̄r, suggesting that �IS

has a simple exponential dependence on n̄r below ec. How-
ever, the knee in �IS occurs at er=47.4kBT�, which is smaller
than the value e��n̄r�=59.6kBT� at the knee in Fig. 6. While
the density of inherent structures might truly be enhanced in
the gap between er and e��n̄r�, we note that the shift of er

with respect to e��n̄r� might indicate that the inherent struc-
ture basins associated with the transition state are especially
large �as noted above, er is associated with the transition
state� and that the harmonic approximation might be espe-
cially ill suited to estimating their free energies for use in
Eq. �6�.

The source of the plateau in �IS above ec may be under-
stood in terms of the dependence of the free energy on both

n̄� and the number of residues, m�, for which all native con-
tacts are broken. As shown in Fig. 7, a plot of m� vs n̄� is
well modeled by the function

m� =
1

3
�en̄�/40 − 1� , �9�

supporting an expectation that breaking a contact is only
likely to create a residue with no native contacts at high n̄�.
The following simple model for Fv then successfully cap-
tures the structure of Fv in Fig. 3:

Fv�n̄�� = �n̄� + �m�, �10�

with m� given by Eq. �10�. Using �=−0.32 and �=−1.07
yields good agreement between values of Fv obtained either
directly from the Hessian or using Eq. �10� �Fig. 8�, with a
correlation coefficient of 0.993 for values calculated from all
inherent structures. We conclude that the change in the slope
of Fv vs e� at ec, and therefore the plateau in �IS�e�� above
ec, is associated with an increase in the likelihood that break-
ing a native contact will increase the number of residues with
no native contacts.

FIG. 6. �Color online� Potential energy e� vs number of broken
contacts, n̄�. The dependence is well modeled by Eq. �8� �red line�.
The energy required to break a native contact is approximately
equal to the binding energy �, with differences due to stress in the
structure. The knee corresponds to a change in stress at n̄r=60,
where e��n̄r�=59.6kBT�.

FIG. 7. Number of residues, m�, for which all native contacts
are broken vs the number of broken contacts, n̄�. The dependence is
well modeled by Eq. �9� �black line�. Note that m�=55 �close to the
expected value of 56� at n̄�=207.

FIG. 8. Comparison of vibrational free energies calculated from
Eq. �10� �y axis� and estimated using inherent structure theory �x
axis�.
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We found that protein stress and rigidity are closely tied
to the network of native contacts through Eqs. �8� and �10�.
This finding is reminiscent of analyses of protein rigidity
using concepts from graph rigidity �13� and the association
of a loss of network rigidity with protein unfolding �7�. It is
therefore tempting to associate the region between er and ec
in Fig. 5 with the region of the mean coordination number
�r where proteins were found in Ref. �7� to become floppy
and unfold. However, the present approach differs from that
used in Ref. �7� in two key ways. First, because all residue
interactions in the present study are lumped into C� atoms,
the coordination numbers are higher and the relation of co-
ordination numbers to protein rigidity might be different than
for the all-atom models considered in Ref. �7�. Second,
whereas the present results were obtained using a dynamical
model, those obtained in Ref. �7� were obtained using a static
model of the protein. It will be interesting to further explore
connections between the analyses based on IS theory and
network rigidity.

The maximum in the density of states above ec is a con-
sequence of considering diversity in vibrations and is not
observed when uniform vibrations are assumed �12�. Inter-
estingly, a similar structure for the density of states, in which
an exponential increase is followed by a maximum, has been
observed for many structural-glass-forming liquids �9�. To
further explore this correspondence, it will be interesting to
improve the estimation of the density of states by obtaining
more accurate estimates of Fv than are possible using a har-
monic approximation �11�.

Studies of two other Gō models of proteins yielded results
that are qualitatively similar to those found here for GB1
�24�, suggesting the possibility that a simple phenomenologi-
cal relationship between the network of native contacts and
the energy landscape might exist for all Gō models. It will be
interesting to explore this relationship for a large number of
proteins and seek representations in which it is identical for
different proteins. Discovery of such “universality” would
enable the prediction of important properties of the energy
landscapes of Gō models without performing numerical
simulations.

It will be important to extend the present results to models
whose energy landscapes exhibit more frustration than the
model of GB1 considered here. For example, increasing K�

by a factor of 10 changes the detailed location, depth, and
vibrations about energy minima; however, importantly, the
native contacts and vibrations of inherent structures remain

consistent with Eqs. �9� and �10� �24�. The validity of these
equations is therefore robust to changes in frustration medi-
ated by the dihedral angle geometry term in Eq. �1�. In ad-
dition, consider a modified model in which there is a weak
attractive interaction for non-native contacts. In contrast to
the simple relation illustrated in Fig. 6, in such a model,
inherent structures with the same potential energy would
likely have diverse numbers of native contacts. However, by
extending the parameter space, the energy still might be sim-
ply related to a combination of both the number of native
contacts and the number of non-native contacts. Similarly,
the vibrational free energies might exhibit diversity among
inherent structures with the same energy, but might still be
simply related to both the number of native contacts and
non-native contacts through an equation analogous to Eq.
�10�.

Ultimately, it will be interesting to incrementally increase
the complexity of the model, extending the present results
�as far as computationally feasible� to realistic, all-atom
models of proteins that include explicit solvent and other
effects that are important in controlling protein function.
Comparisons with all-atom models will create an avenue for
understanding more precisely the limitations of Gō models,
which are gaining in popularity. Use of all-atom models will
also facilitate the exploration of links between analyses
based on IS theory and network rigidity.

The present results demonstrate that simple connections
to protein structure are hidden within the energy landscape of
a Gō model. The potential energies and vibrational free en-
ergies of inherent structures are highly correlated, and both
reflect simple measures of networks of native contacts.
Through use of IS theory, these regularities should enable
significant simplification of thermodynamic models of pro-
teins �8,9,12�. It will be important to determine the relevance
of the present results to more realistic models; both the suc-
cess of Gō models in studying mechanisms of protein folding
and the fact that diversity in vibrations about different
minima has been observed in all-atom molecular mechanics
models of proteins �22,23� suggest that the present results
might be meaningfully generalized.
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